

How to unify attribution explanations by interactions?

Huiqi Deng

Attribution definition

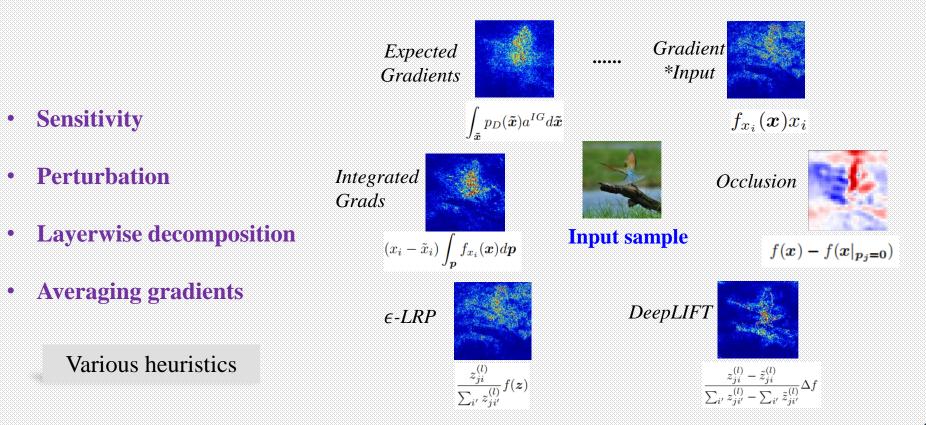
Attribution explanation

- A branch of semantic explanations
- Inferring contribution score of each individual feature

Definition 1. For a pre-trained model f, an attribution of prediction at input $\mathbf{x} = [x_1, \dots, x_n]$ is a vector $\mathbf{a} = [a_1, \dots, a_n]$, where a_i is the contribution of x_i to the prediction $f(\mathbf{x})$.

Existing attribution methods

Many attribution methods are proposed recently.



Different formulations

- > The attrbution problem is not well-defined
 - The definition is uninformative for how to assign the contribution
- > Many attribution methods are based on different heurisitcs
 - Few theoretical foundations
 - No mutuality among existing methods
 - Difficult to compare theoretically

- We propose a **Taylor attribution framework**, which offers a theoretical formulation to the attribution problem.
- *Fourteen* mainstream attribution methods with different formulations are **unified into** the proposed framework by theoretical reformulations.
- We propose principles for *a reasonable attribution*, and **assess the fairness** of existing attribution methods.

- We propose a **Taylor attribution framework**, which offers a theoretical formulation for how to assign contribution.
- Fourteen mainstream attribution methods are unified into the proposed Taylor framework by theoretical reformulations.
- We propose principles for **a reasonable attribution**, and **assess the fairness** of existing attribution methods.

Input: pre-trained model f, input sample x, and baseline \tilde{x} (*no signal state*) Output: attribution vector a

Many attribution methods aim to **distribute the outcome of** x (w.r.t the baseline \tilde{x}) to each feature,

$$f(\mathbf{x}) - f(\widetilde{\mathbf{x}}) = a_1 + \dots + a_n$$

$$\downarrow$$
Corresponds to $v(N) - v(\emptyset)$

However, there are infinite possible cases for such decomposition. Which decomposition is reasonable?

Deng et al. A Unified Taylor Framework for Revisiting Attribution Methods, AAAI, 2021. Deng et al. A General Taylor Framework for Unifying and Revisiting Attribution Methods. in arXiv:2105.13841

Challenges

• DNN Model f is too complex to analyze

Basic idea

- Taylor Theroem: If f(x) is infinitely differentiable, then $f(x) f(\tilde{x})$ can be approximated by a Taylor expansion function
- The Taylor expansion function can be explicitly divided into independent and interactive parts
- Then the attribution can be expressed as a function of Taylor independent and interaction terms

Second-order Taylor attribution

□ Second-order Taylor expansion

$$f(\mathbf{x}) - f(\widetilde{\mathbf{x}}) = \sum_{i} f_{x_i} \Delta_i + \frac{1}{2} \sum_{i} \sum_{j} f_{x_i x_j} \Delta_i \Delta_j + \boldsymbol{\varepsilon}$$
(1)

Divide the expansion into first-order, high-order independent and interaction terms

$$f(\mathbf{x}) - f(\tilde{\mathbf{x}}) = \sum_{i} f_{x_{i}} \Delta_{i} + \frac{1}{2} \sum_{i} f_{x_{i}^{2}} \Delta_{i}^{2} + \frac{1}{2} \sum_{i \neq j} f_{x_{i}x_{j}} \Delta_{i} \Delta_{j} + \varepsilon$$
 (2)
All first-order terms, T_{i}^{α} All high-order independent terms, T_{i}^{γ} interaction terms $I(S)$
Attribution vector can be expressed as a function of the three type terms
 $a_{i} = decompose(f(\mathbf{x}) - f(\tilde{\mathbf{x}})) \implies a_{i} = \varphi(T_{i}^{\alpha}, T_{i}^{\gamma}, I(S))$

Connections with related workin Game theory

- Connection to Shapley Taylor interaction index [1]
 - Shapely Taylor interaction index $J^k(S)$ measures Taylor interactions of subsets with at most k players.

> When k = n, i.e., consider interactions of all subsets,

 $J^n(S) = I(S), \ \forall S$

• I(S) is a special case of Shapley Taylor interaction index.

- We propose a **Taylor attribution framework**, which offers a theoretical formulation for the attribution problem.
- We prove that, *Fourteen* attribution methods with different formulas can be **unified into** the proposed Taylor attribution framework.
- We propose principles for a reasonable attribution, and assess the fairness of existing attribution methods.

Unifying attribution maps of fourteen > methods by interactions

Attribution maps of *Fourteen* methods are unified into the Taylor attribution framework. Specifically, they can expressed as a weighted sum of the three type terms.

Categorization	Methods	Taylor Reformulations
Basic versions	GI [21]	$a_i^{GI} = T_i^\alpha$
	LRP- ϵ [8]	$a_i^{LRP\epsilon} = T_i^{\alpha}$
	GCAM [31]	$a_{ij}^{GCAM} = (T^{\alpha}(h))_{ij}$
	Occ-1 [19]	$a_i^{Occ1} = T_i^\alpha + T_i^{\gamma_d} + \sum_{\{i\} \subsetneq A} T_A^{\gamma_t}$
	Occ-p [22]	$a_i^{Occp} = T^{\alpha}_{p_j} + T^{\gamma_d}_{p_j} + \sum_{p_j \cap A \neq \emptyset} T^{\gamma_t}_A$
	Integrated [7]	$a_i^{IG} = T_i^\alpha + T_i^{\gamma_d} + a_i^{\gamma_t}(IG)$
	DeepLIFT [23]	$a_i^{DL}(l) = a_i^{IG}(l) = T_i^{\alpha} + T_i^{\gamma_d} + a_i^{\gamma_t}(IG)$
	Shapley [29]	$a_i^{Shap} = T_i^{\alpha} + T_i^{\gamma_d} + a_i^{\gamma_t}(Shap)$
Separating + & -	DeepLIFT+- [23]	$ \begin{aligned} a_i^{DL+} &= T_i^\alpha + T_i^{\gamma_d} + a_i^{\gamma_t}(DL+) \\ a_i^{DL-} &= T_i^\alpha + T_i^{\gamma_d} + a_i^{\gamma_t}(DL-) \end{aligned} $
	Deep Taylor [25]	$a_i^{DTD} = T_i^\alpha + T_i^{\gamma_d} + a_i^{\gamma_t}(IG) + cT_{N-}$
	LRP- $\alpha\beta$ [8]	$\begin{aligned} a_i^+ &= \alpha (T_i^\alpha + T_i^{\gamma d} + a_i^{\gamma t} (IG) + cT_{N^-}) \\ a_i^- &= -\beta (T_i^\alpha + T_i^{\gamma d} + a_i^{\gamma t} (IG) + cT_{N^+}) \end{aligned}$
Expected Attribution	Expected Grads [28]	$a_i^{EG} = \int_{oldsymbol{ ilde{x}}} p_D(oldsymbol{ ilde{x}}) a_i^{IG} doldsymbol{ ilde{x}}$
	Expected DeepLIFT	$a_i^{EDL} = \int_{oldsymbol{ ilde{x}}} p_D(oldsymbol{ ilde{x}}) a_i^{DL} doldsymbol{ ilde{x}}$
	Deep Shapley [5]	$a_i^{DShap} pprox \int_{oldsymbol{ ilde{x}}} p_D(oldsymbol{ ilde{x}}) a_i^{Shap} doldsymbol{ ilde{x}}$

 $a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum c_i^S I(S)$ $\alpha_i, \gamma_i, c_i^S$ are the coefficients

12

Deng et al. A Unified Taylor Framework for Revisiting Attribution Methods, AAAI, 2021. Deng et al. A General Taylor Framework for Unifying and Revisiting Attribution Methods. in arXiv:2105.13841

Unifying attribution maps of fourteen methods by interactions: Gradient×Input

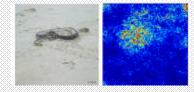
Intuition. Gradient*Input produces attribution maps with improved sharpness, by multipling the gradients with the input.

Unification. *Gradient* ×*Input* can be unified into Taylor attribution framework.

Reformulation. In Gradient×Input, the corresponding coefficients are,

- $\alpha_i = 1,$ First-order terms, T_i^{α} $\gamma_i = 0,$ high-order independent terms, T_i^{γ} $c_i^S = 0, \quad \forall S$ high-order interaction terms, I(S)
- Only assigns the first-order terms

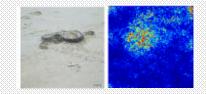
$$a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum_s c_i^s I(S)$$



Unifying attribution maps of fourteen methods by interactions: ε-LRP

Intuition. It produces *attribution maps by* distributing the output in proportion according to the input. It conducts in a layer-wise manner.

Unification. ε-LRP can be unified into the Taylor attribution framework.



Reformulation. In ε -LRP, if relu is used as activation function, the corresponding coefficients are [1],

- $\alpha_i = 1$, First-order terms, T_i^{α} $\gamma_i = 0$, high-order independent terms, T_i^{γ} $c_i^{S} = 0$, $\forall S$ high-order interaction terms, I(S)
- Only assigns the first-order terms when relu is applied.

٠

$$a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum_{s} c_i^{s} I(S)$$

Intuition. GradCAM conducts global average pooling to the gradients, then perform a linear combination

Unifying attribution maps of fourteen

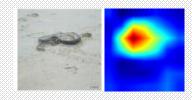
methods by interactions: GradCAM

Unification. *GradCAM can be unified into Taylor attribution framework*.

Reformulation. Define the global average pooled features as F. Consider f(x) = h(F). Then in GradCAM, the corresponding coefficients of function h are,

- $\alpha_i = 1,$ First-order terms, T_i^{α} $\gamma_i = 0,$ high-order independent terms, T_i^{γ} $c_i^{S} = 0, \quad \forall S$ high-order interaction terms, I(S)
- Assigns the first-order terms of function *h*.

$$a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum_{S} c_i^{S} I(S)$$



>

Unifying attribution maps of fourteen methods by interactions: Occlusion-1&patch

Intuition. Occlude one pixel/patch, and observe how the prediction changes.

Unification. Occlusion-1 & Occlusion-patch can be unified into Taylor framework.

Reformulation. In Occlusion-1, the corresponding coefficients are,

 $\begin{array}{ll} \alpha_i = 1, & \text{First-order terms, } T_i^{\alpha} \\ \gamma_i = 1, & \text{high-order independent terms, } T_i^{\gamma} \\ c_i^S = 1, & if \ i \in S \\ c_i^S = 0, & if \ i \notin S \end{array}$

• assigns first-order, high-order independent terms of x_i , and all interactions involving x_i .

$$a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum_{S} c_i^{S} I(S)$$

Unifying attribution maps of fourteen methods by interactions: Shapley value

Intuition. Shapley value obtains the attribution map by averaging the marginal contribution of x_i to coalition *S* over all possible coalitions involving x_i .

Unification. *Shapley value can be unified into Taylor attribution framework.*

Reformulation. In Shapley value, the corresponding coefficients are,

 $\alpha_{i} = 1, \qquad \text{First-order terms, } T_{i}^{\alpha}$ $\gamma_{i} = 1, \qquad \text{high-order independent terms, } T_{i}^{\gamma}$ $c_{i}^{S} = 1/|S|, \quad if \ i \in S$ $c_{i}^{S} = 0, \quad if \ i \notin S$ high-order interaction terms, I(S)

• assigns first-order, independent terms of x_i , and 1/|S| proportion of interactions involving x_i .

$$a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum_s c_i^s I(S)$$

Intuition. It produces the attribution map by integrating the gradients along a straight line from baseline \tilde{x} to input x.

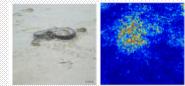
Unification. Integrated Gradients can be unified into Taylor attribution framework.

Reformulation. In Integrated Gradients, the corresponding coefficients are,

 $\alpha_{i} = 1, \qquad \text{First-order terms, } T_{i}^{\alpha}$ $\gamma_{i} = 1, \qquad \text{high-order independent terms, } T_{i}^{\gamma}$ $c_{i}^{S}(\pi) = k_{i}/K, \qquad if \ i \in S, \pi = [k_{1}, \dots, k_{n}], \qquad K = k_{1} + \dots + k_{n}$ $c_{i}^{S} = 0, \qquad if \ i \notin S \qquad \text{high-order interaction terms, } I(S)$

- assigns first-order, independent terms of x_i , and k_i/K proportion of interaction terms $x_1^{k_1} x_2^{k_2} \dots x_n^{k_n}$ to x_i .
- For example, $f(\mathbf{x}) = x_1 x_2^3 + x_1^2 x_2 x_3^2$, then $a_2 = \frac{3}{4} x_1 x_2^3 + \frac{1}{5} x_1^2 x_2 x_3^2$.

$$a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum_s c_i^s I(S)$$



Intuition. DeepLIFT propogates the output difference in proportion according to the input difference. Such propogation proceeds in a layer-wise manner.

into Taylor attribution framework.

Unifying attribution maps of fourteen

Reformulation. Consider the attribution at l layer. If $f_l(z) = \sigma(w^T z + b)$, then in DeepLIFT Rescale, the corresponding coefficients are,

First-order terms, T_i^{α} $\alpha_i = 1$, high-order independent terms, T_i^{γ} $\gamma_i = 1$, $c_i^S(\pi) = k_i/K, \quad if \ i \in S, \pi = [k_1, \dots, k_n] \\ c_i^S = 0, \quad if \ i \notin S \end{cases} \xrightarrow{K = k_1 + \dots + k_n} \text{high-order interaction terms, } I(S)$

Shares the same coefficients as Integrated gradients at each layer.

Unification. DeepLIFT Rescale can be unified

$$a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum_s c_i^s I(s)$$

Intuition. proceeds in a layer-wise manner. It propgates all relevances to the features with positive weight.

Unification. *Deep Taylor can be unified into the framework.*

Reformulation. Define $N^+ = \{i | w_{ji} \ge 0\}$ and $N^- = \{i | w_{ji} < 0\}$, where w_{ji} is the parameters at *l* layer. In Deep Taylor, for features in N^+ , the coefs are,

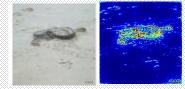
 $\alpha_{i} = 1, \qquad \text{First-order terms, } T_{i}^{\alpha}$ $\gamma_{i} = 1, \qquad \text{high-order independent terms, } T_{i}^{\gamma}$ $c_{i}^{S}(\pi) = k_{i}/K, \qquad if \ i \in S, \pi = [k_{1}, \dots, k_{n}]$ $c_{i}^{S} = 0, \qquad if \ i \notin S, S \subseteq N^{-}$ $c_{i}^{S} = z_{ji}^{+}/z_{j}, \qquad if \ i \notin S, S \subseteq N^{-}$

• Noted that the interactions among features in N^- are assigned to features in N^+ .

$$a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum c_i^S I(S)$$

Unifying attribution maps of fourteen methods by interactions: Deep Taylor

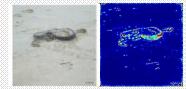
IJCAI-21 TUTORIALS



Unifying attribution maps of fourteen methods by interactions: LRP-*αβ*

Intuition. propgates α times relevances to the features with positive weight, and β times to the features with negative weight.

Unification. LRP- $\alpha\beta$ can be unified into the Taylor attribution framework.



Reformulation. Define $N^+ = \{i | w_{ji} \ge 0\}$ and $N^- = \{i | w_{ji} < 0\}$, where w_{ji} is the parameters at *l* layer. In LRP- $\alpha\beta$, for features in N^+ , the coefficients are,

 $\begin{aligned} \alpha_i &= \alpha, \\ \gamma_i &= \alpha, \\ c_i^S(\pi) &= \alpha k_i / K, \\ if \ i \ \in \ S, \pi &= [k_1, \dots /, k_n] \\ c_i^S &= 0, \quad if \ i \ \notin \ S, \quad S \subset N^- \end{aligned}$

high-order independent terms, T_i^{γ}

First-order terms, T_i^{α}

 $K = k_1 + \ldots + k_n$ high-order interaction terms, I(S)

• The coefficients are α times the coefficients in **Dee**p = a Nor attribution.

 $a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum_{s} c_i^{s} I(S)$

Intuition. proposed to reduce the probability that attribution is dominated specific baseline, which averages the attributions over multiple baselines

$$a_i^{exp} = \int p(\widetilde{\mathbf{x}}) a_i^{basic} d\widetilde{\mathbf{x}} \quad (1$$

where a_i^{basic} is the attribution obtained by basic methods.

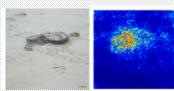
Unifying attribution maps of fourteen

methods by interactions: Expected Attribution

Unification. Combining Eq.(1) with the previous reformulations, Expected Attributions can be unified into the Taylor attribution framework.

For example, Expected Gradients, Expected DeepLIFT, and Deep Shapley. •

$$a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum_S c_i^S I(S)$$

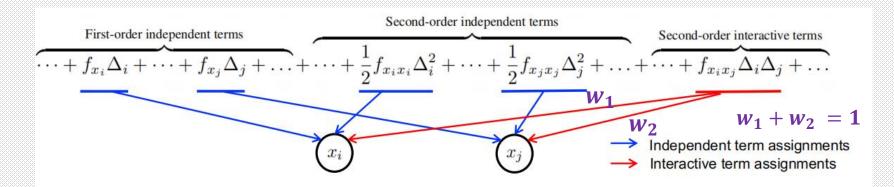


- We propose a **Taylor attribution framework**, which offers a theoretical formulation for the attribution problem.
- We prove that, *Fourteen* attribution methods with different formula can be **unified into** the proposed Taylor attribution framework.
- We propose principles for *a reasonable attribution*, and **assess the fairness** of existing attribution methods.

• We proved that, attribution maps of fourteen methods can be unified as the following form:

$$a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum_s c_i^s I(s)$$

How to define a reasonable attribution map?

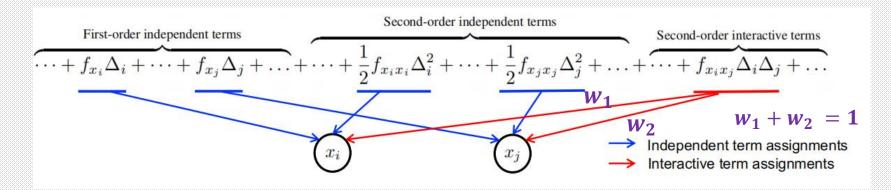


Principle 1:

- The first-order terms of x_i should be all assigned to x_i .
- The high-order independent terms of x_i should be all assigned to x_i .
- Only Interactions of S involving x_i , should be assigned to x_i .

 $\alpha_{i} = 1, \gamma_{i} = 1,$ $c_{i}^{S} > 0, \quad if \ i \in S$ $c_{i}^{S} = 0, \quad if \ i \notin S$ $a_{i} = \alpha_{i} T_{i}^{\alpha} + \gamma_{i} T_{i}^{\gamma} + \sum_{i} c_{i}^{S} I(S)$

Principles for a reasonable attribution



Principle 2:

• Interactions of any coalition *S* should be all distributed to the players in *S*.

$$\sum_{i\in S}c_i^S=1,\qquad\forall S$$

$$a_i = \alpha_i T_i^{\alpha} + \gamma_i T_i^{\gamma} + \sum_s c_i^s I(s)$$

Assessing the fairness of existing attribution methods

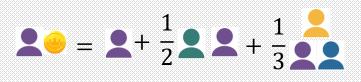
These principles can be applied to assess the fairness of exsiting methods.

➢ For example, Shapley value well satisfies the two principles.

$$\alpha_{i} = 1, \gamma_{i} = 1,$$

$$c_{i}^{S} = 1/|S|, \quad if \ i \in S$$

$$c_{i}^{S} = 0, \quad if \ i \notin S$$



- Interactions of S are evenly assigned to the players in S.
- In this sense, Shapley value is a **fair** attribution.
- ➢ For example, Occlusion-1 satisfies principle 1, doesn't satisfy principle 2.

$$\alpha_{i} = 1, \gamma_{i} = 1,$$

$$c_{i}^{S} = 1, \quad if \ i \in S \implies \sum_{i \in S} c_{i}^{S} = |S|, \quad \forall S$$

$$c_{i}^{S} = 0, \quad if \ i \notin S \implies \sum_{i \in S} c_{i}^{S} = |S|, \quad \forall S$$

• Interactions of *S* are repeatedly assigned to each player.